∫π/40dx5+4cosx=∫π/40dx5+4(1−tan2x/21+tan2x/2)
=∫π/40dx(1+tan2x/2)5+5tan2x/2+4−4tan2x/2
=∫π/40sec2x/2dx9+tan2x/2 Let t=tanx/2 dt=12sec2x/2dx
=∫π/402dt9+t2
When x/2=0,t=0; when x/2=π/4 ⇒t=1
=∫102dt9+t2
=2×13tan−1(t3)]10
=23[tan−1(1/3)−tan−1(0)]
=23[tan−1(1/3)−0]
=23tan−1(1/3).