wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 0dx(1+x2)4

A
π32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3π32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5π32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
7π32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 5π32
Formulae used;
ϕ=nπϕ=0sin2ϕdϕ=nπ2 (remember this trick!)...(same for cosine function also).
sin(2θ)=2sin(θ)cos(θ)......(i)
1+tan2θ=sec2θ.....(ii)
sin6θ+cos6θ=13sin2θcos2θ.....(iii)
Proof for the last one,
(sin2θ+cos2θ)3=sin6θ+cos6θ+3sin2θcos2θ(sin2θ+cos2θ)1=sin6θ+cos6θ+3sin2θcos2θsin6θ+cos6θ=13sin2θcos2θ
------------------
I=0dx(1+x2)4
Let x=tan(θ) and limits of the integral be θ=0 to θ=π2
Therefore,
I=π20dtanθ(1+tan2θ)4=π20sec2θdθ(sec2θ)4=π20cos6θdθI=π20cos6(π2θ)dθ=π20sin6θdθ2I=π20sin6θdθ+π20cos6θdθ=π20sin6θ+cos6θdθ2I=π2013sin2θcos2θdθ=π20dθ3π20sin2θcos2θdθ2I=π23(π20sin22θ4dθ)letθ=ϕ22I=π238(ϕ=πϕ=0sin2ϕdϕ)
2I=π238(π2)=5π16I=5π32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon