The correct option is
B 5π32Formulae used;
∫ϕ=nπϕ=0sin2ϕdϕ=nπ2 (remember this trick!)...(same for cosine function also).
sin(2θ)=2sin(θ)cos(θ)......(i)
1+tan2θ=sec2θ.....(ii)
sin6θ+cos6θ=1−3sin2θcos2θ.....(iii)
Proof for the last one,
(sin2θ+cos2θ)3=sin6θ+cos6θ+3sin2θcos2θ(sin2θ+cos2θ)∴1=sin6θ+cos6θ+3sin2θcos2θ∴sin6θ+cos6θ=1−3sin2θcos2θ
------------------
I=∫∞0dx(1+x2)4
Let x=tan(θ) and limits of the integral be θ=0 to θ=π2
Therefore,
I=∫π20dtanθ(1+tan2θ)4=∫π20sec2θdθ(sec2θ)4=∫π20cos6θdθI=∫π20cos6(π2−θ)dθ=∫π20sin6θdθ2I=∫π20sin6θdθ+∫π20cos6θdθ=∫π20sin6θ+cos6θdθ2I=∫π201−3sin2θcos2θdθ=∫π20dθ−3∫π20sin2θcos2θdθ2I=π2−3(∫π20sin22θ4dθ)letθ=ϕ22I=π2−38(∫ϕ=πϕ=0sin2ϕdϕ)
2I=π2−38(π2)=5π16∴I=5π32