3
You visited us
3
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
Evaluate: ∫...
Question
Evaluate:
∫
π
/
2
0
cos
x
(
1
+
sin
x
)
(
2
+
sin
x
)
d
x
Open in App
Solution
Let
sin
x
=
t
, then
cos
x
d
x
=
d
t
Hence,
I
=
∫
0
1
d
t
(
t
+
1
)
(
t
+
2
)
=
∫
0
1
(
t
+
2
)
−
(
t
+
1
)
d
t
(
t
+
1
)
(
t
+
2
)
=
∫
0
1
1
t
+
1
−
1
t
+
2
d
t
=
[
ln
t
+
1
t
+
2
]
0
1
=
[
ln
0
+
1
0
+
2
]
−
[
ln
1
+
1
1
+
2
]
=
ln
(
1
2
)
−
ln
(
2
3
)
.
Suggest Corrections
0
Similar questions
Q.
Evaluate
∫
π
2
0
sin
x
1
+
cos
x
+
sin
x
d
x
Q.
∫
cos
x
(
1
+
sin
x
)
(
2
+
sin
x
)
d
x
=
Q.
∫
π
2
0
c
o
s
x
(
1
+
s
i
n
x
)
(
2
+
s
i
n
x
)
d
x
=
[UPSEAT 1999]