2
You visited us
2
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
Evaluate: ∫...
Question
Evaluate:
∫
π
/
2
0
cos
x
(
1
+
sin
x
)
(
2
+
sin
x
)
d
x
Open in App
Solution
sin
(
x
)
t
0
0
π
2
1
Let
I
=
∫
π
/
2
0
cos
x
(
1
+
sin
x
)
(
2
+
sin
x
)
d
x
Put
sin
x
=
t
Differentiating we get,
cos
x
d
x
=
d
t
Refer diagram.
I
=
∫
1
0
1
(
1
+
t
)
(
2
+
t
)
d
t
1
(
1
+
t
)
(
2
+
t
)
=
A
1
+
t
+
B
2
+
t
1
=
A
(
2
+
t
)
+
8
(
1
+
t
)
Putting
t
=
−
1
in above equation
A
=
1
Putting
t
=
−
2
in above equation
B
=
−
1
∴
1
(
1
+
t
)
(
2
+
t
)
=
1
1
+
t
−
1
2
+
t
∴
I
=
∫
1
0
[
1
1
+
t
−
1
2
+
t
]
d
t
=
[
log
|
1
+
t
|
]
1
0
−
[
l
o
g
|
2
+
t
|
]
1
0
=
[
l
o
g
2
−
l
o
g
1
]
=
[
l
o
g
3
−
l
o
g
2
]
=
l
o
g
2
−
l
o
g
(
3
2
)
[
∵
∫
π
/
2
0
cos
x
(
1
+
sin
x
)
(
2
+
sin
x
)
d
x
=
l
o
g
(
4
3
)
]
.
Suggest Corrections
0
Similar questions
Q.
∫
π
2
0
c
o
s
x
(
1
+
s
i
n
x
)
(
2
+
s
i
n
x
)
d
x
=
[UPSEAT 1999]