Consider the given integral.
I=∫π/2013+2cosxdx
I=∫π/2013+2(1−2sin2x2)dx
I=∫π/2013+2−4sin2x2dx
I=∫π/20sec2x25sec2x2−4tan2x2dx
I=∫π/20sec2x25(tan2x2+1)−4tan2x2dx
I=∫π/20sec2x25+tan2x2dx
Let t=tanx2
dtdx=sec2x2(12)
2dt=sec2x2dx
Therefore,
I=2∫101(√5)2+t2dt
I=2[1√5tan−1(t√5)]10
I=2[1√5tan−1(1√5)−1√5tan−1(0)]
I=2[1√5tan−1(1√5)−0]
I=2√5tan−1(1√5)
Hence, this is the answer.