Consider the given integral.
I=∫π/20dx(4sin2x+5cos2x)
I=∫π/20dx(4(1−cos2x)+5cos2x)
I=∫π/20dx(4−4cos2x+5cos2x)
I=∫π/20dx(4+cos2x)
I=∫π/20sec2xdx(4sec2x+1)
I=∫π/20sec2xdx(4(1+tan2x)+1)
I=∫π/20sec2xdx(4+4tan2x+1)
I=14∫π/20sec2xdx(54+tan2x)
Let t=tanx
dt=sec2xdx
Therefore,
I=14∫∞01(√52)2+t2dt
I=14⎡⎢ ⎢ ⎢ ⎢⎣1√52tan−1⎛⎜ ⎜ ⎜ ⎜⎝t√52⎞⎟ ⎟ ⎟ ⎟⎠⎤⎥ ⎥ ⎥ ⎥⎦∞0
I=[12√5tan−1(2t√5)]∞0
I=[12√5tan−1(∞)−12√5tan−1(0)]
I=12√5tan−1(tanπ2)−12√5tan−1(tan0)
I=π4√5−0
I=π4√5
Hence, this is the answer.