wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
π/20dx(4sin2x+5cos2x)

Open in App
Solution

Consider the given integral.


I=π/20dx(4sin2x+5cos2x)


I=π/20dx(4(1cos2x)+5cos2x)


I=π/20dx(44cos2x+5cos2x)


I=π/20dx(4+cos2x)


I=π/20sec2xdx(4sec2x+1)


I=π/20sec2xdx(4(1+tan2x)+1)


I=π/20sec2xdx(4+4tan2x+1)


I=14π/20sec2xdx(54+tan2x)



Let t=tanx


dt=sec2xdx



Therefore,


I=1401(52)2+t2dt


I=14⎢ ⎢ ⎢ ⎢152tan1⎜ ⎜ ⎜ ⎜t52⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥0


I=[125tan1(2t5)]0


I=[125tan1()125tan1(0)]


I=125tan1(tanπ2)125tan1(tan0)


I=π450


I=π45



Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon