wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π/20sin2xsinx+cosxdx.

Open in App
Solution

I=π/20sin2xsinx+cosxdx
I=π/201cos2x2sinx+cosxdx[cos2x=12sin2x]
I=12π/20dxsinx+cosx12π/20cos2xsinx+cosxdx
P=12π/20dxsinx+cosx,Q=12π/20cos2xsinx+cosxdx
I=PQ1
Q=12π/20cos2xsinx+cosxdx=12π/20cos2xsin2xsinx+cosxdx
Q=12π/20(cosxsinx)(cosx+sinx)sinx+cosxdx
Q=12π/20(cosxsinx)dx
Q=12|sinx+cosx|π/20
Q=12[1+001]=02
P=12π/20dxsinx+cosx
P=12π/20dx2sinx2cosx2+12sin2x2[sin2θ=2sinθcosθ,cos2θ=12sin2θ]
divide numerator and denominator by cos2x2, we get
P=12π/20sec2x2dx2tanx2+sec2x22tan2x2
P=12π/20sec2x2dx2tanx2+1tan2x2[sec2x2tan2x2=1]
Put tanx2=t12sec2x2dx=dt
when x=0t=0 & x=π2t=1
P=10dt2t+1t2=10dt(t2+12t)+2
P=10dt(2)2(t1)2
P=122[log2+t12t+1]10
[1a2x2dx=12aloga+xax]
P=122[log2+t12t+1log2+0120+1]
P=122⎢ ⎢log1log∣ ∣ ∣(21)221∣ ∣ ∣⎥ ⎥
[212+1=212+1×2121]
P=122log[2+122]P=122log[322]P=122log[1322×3+223+22]
P=122log[3+2298]
P=122log(3+22)3
I=PQ=122log(3+22)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon