I=∫π/20sin2xsinx+cosxdx
I=∫π/201−cos2x2sinx+cosxdx[∵cos2x=1−2sin2x]
I=12∫π/20dxsinx+cosx−12∫π/20cos2xsinx+cosxdx
P=12∫π/20dxsinx+cosx,Q=12∫π/20cos2xsinx+cosxdx
∴I=P−Q⟶1
Q=12∫π/20cos2xsinx+cosxdx=12∫π/20cos2x−sin2xsinx+cosxdx
Q=12∫π/20(cosx−sinx)(cosx+sinx)sinx+cosxdx
Q=12∫π/20(cosx−sinx)dx
Q=12|sinx+cosx|π/20
Q=12[1+0−0−1]=0⟶2
P=12∫π/20dxsinx+cosx
P=12∫π/20dx2sinx2cosx2+1−2sin2x2[∵sin2θ=2sinθcosθ,cos2θ=1−2sin2θ]
divide numerator and denominator by cos2x2, we get
P=12∫π/20sec2x2dx2tanx2+sec2x2−2tan2x2
P=12∫π/20sec2x2dx2tanx2+1−tan2x2[∵sec2x2−tan2x2=1]
Put tanx2=t⟹12sec2x2dx=dt
when x=0⟹t=0 & x=π2⟹t=1
P=∫10dt2t+1−t2=∫10dt−(t2+1−2t)+2
P=∫10dt(√2)2−(t−1)2
P=12√2[log∣∣∣√2+t−1√2−t+1∣∣∣]10
[∵∫1a2−x2dx=12alog∣∣∣a+xa−x∣∣∣]
P=12√2[log∣∣∣√2+t−1√2−t+1∣∣∣−log∣∣∣√2+0−1√2−0+1∣∣∣]
P=12√2⎡⎢
⎢⎣log1−log∣∣
∣
∣∣(√2−1)22−1∣∣
∣
∣∣⎤⎥
⎥⎦
[∵√2−1√2+1=√2−1√2+1×√2−1√2−1]
P=−12√2log[2+1−2√2]P=−12√2log[3−2√2]P=12√2log[13−2√2×3+2√23+2√2]
P=12√2log[3+2√29−8]
P=12√2log(3+2√2)⟶3
I=P−Q=12√2log(3+2√2)