Using the property,
∫a0f(x)dx=∫a0f(a−x)dx
Hence we can write I=∫π20logsinxdx=∫π20logsin(π2−x)dx
=∫π20logcosxdx
I=∫π20logsinxdx=∫π20logcosxdx
⇒2I=∫π20logsinxdx+∫π20logcosxdx
⇒2I=∫π20logsinx+logcosxdx
2I=∫0π2(log(sinxcosx))dx
=∫π20log(sin2x2)dx
=∫π20(logsin2x−log2)dx
∫π20logsin2xdx−∫π20log2dx
=∫π20logsin2xdx−π2log2 ........(1)
Let I1=∫π20logsin2xdx and t=2x then I1=12∫π0logsintdt
and using the property ∫2a0f(x)dx=2∫a0f(2a−x)dx if f(2a−x)=f(x)
Note that logsint=logsin(π−t) and we get
I1=12∫π0logsintdt=∫π20logsintdt=I
Hence (1) becomes 2I=I−πlog22
or I=−πlog22