wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:
π/20log(sinx)dx

Open in App
Solution

Using the property,
a0f(x)dx=a0f(ax)dx
Hence we can write I=π20logsinxdx=π20logsin(π2x)dx
=π20logcosxdx
I=π20logsinxdx=π20logcosxdx
2I=π20logsinxdx+π20logcosxdx
2I=π20logsinx+logcosxdx
2I=0π2(log(sinxcosx))dx
=π20log(sin2x2)dx
=π20(logsin2xlog2)dx
π20logsin2xdxπ20log2dx
=π20logsin2xdxπ2log2 ........(1)
Let I1=π20logsin2xdx and t=2x then I1=12π0logsintdt
and using the property 2a0f(x)dx=2a0f(2ax)dx if f(2ax)=f(x)
Note that logsint=logsin(πt) and we get
I1=12π0logsintdt=π20logsintdt=I
Hence (1) becomes 2I=Iπlog22
or I=πlog22

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon