We have, I=∫π0xa2cos2x+b2sin2xdx .... (i)
I=∫π0π−xa2cos2(π−x)+b2sin2(π−x)dx
(∵∫a0f(x)dx=∫a0f(a−x)dx)
I=∫π0π−xa2cos2x+b2sinxdx .... (ii)
On adding equations (i) and (ii), we get
2I=∫π0x+π−xa2cos2x+b2sin2xdx
2I=π∫π01a2cos2x+b2sin2xdx
Using the property, ∫2a0f(x)⋅d=∫a0[f(x)+f(2a−x)]dx
∴2I=π[∫π/201a2cos2x+b2sin2xdx+∫π/201a2cos2(π−x)+b2sin2(π−x)dx]
I=π∫π/201a2cos2x+b2sin2xdx=π∫π/20dxa2cos2x(1+b2a2tan2x)
=πa2∫π/20sec2xdx1+b2a2tan2x [By putting u=batanx,du=basec2xdx when x=0,u=0 when x=π2,u=∞]
=πa2∫∞0abdu1+u2
=πab∫∞0du1+u2=πab[tan−1(u)]∞0+c
=πab[tan−1∞−tan−10]+c
=πab[π2−0]+c
=π22ab