wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π0xa2cos2x+b2sin2xdx

Open in App
Solution

We have, I=π0xa2cos2x+b2sin2xdx .... (i)
I=π0πxa2cos2(πx)+b2sin2(πx)dx
(a0f(x)dx=a0f(ax)dx)
I=π0πxa2cos2x+b2sinxdx .... (ii)
On adding equations (i) and (ii), we get
2I=π0x+πxa2cos2x+b2sin2xdx
2I=ππ01a2cos2x+b2sin2xdx
Using the property, 2a0f(x)d=a0[f(x)+f(2ax)]dx
2I=π[π/201a2cos2x+b2sin2xdx+π/201a2cos2(πx)+b2sin2(πx)dx]
I=ππ/201a2cos2x+b2sin2xdx=ππ/20dxa2cos2x(1+b2a2tan2x)
=πa2π/20sec2xdx1+b2a2tan2x [By putting u=batanx,du=basec2xdx when x=0,u=0 when x=π2,u=]
=πa20abdu1+u2
=πab0du1+u2=πab[tan1(u)]0+c
=πab[tan1tan10]+c
=πab[π20]+c
=π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon