wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π0xsin3x1+cos2xdx.

Open in App
Solution

I=π0xsin3x1+cos2xdx
=π0(πx)sin3(πx)1+cos2(πx)dx=π0(πx)sin3x1+cos2xdx
Hence
2I=π0πsin3x1+cos2xdx
Or
I=π2π0sin3x1+cos2xdx
Let cosx=t
sinxdx=dt
Hence
I=π210(1t2)dt1+t2
=π210(t21)dtt2+1
=π210(t2+12)dtt2+1
=π21012t2+1dt
=π2[t2tan1t]10
=π2[12tan1(1)]
=π2[12(π4)]
=π2(π21)
=π24π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon