I=∫π0xsin3x1+cos2xdx
=∫π0(π−x)sin3(π−x)1+cos2(π−x)dx=∫π0(π−x)sin3x1+cos2xdx
Hence
2I=∫π0πsin3x1+cos2xdx
Or
I=π2∫π0sin3x1+cos2xdx
Let cosx=t
sinxdx=−dt
Hence
I=−π2∫−10(1−t2)dt1+t2
=π2∫−10(t2−1)dtt2+1
=π2∫−10(t2+1−2)dtt2+1
=π2∫−101−2t2+1dt
=π2[t−2tan−1t]−10
=π2[−1−2tan−1(−1)]
=π2[−1−2(−π4)]
=π2(π2−1)
=π24−π2