wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π0xsinx1+cos2xdx

Open in App
Solution

Let I=π0xsinx1+cos2xdxI=π0(πx)sin(πx)dx1+cos2(πx)=π0(πx)sinxdx1+cos2x=ππ0sinxdx1+cos2xI or 2I=ππ0sinxdx1+cos2x or I=π2π0sinxdx1+cos2x

Put cosx=t so that sinxdx=dt

The limits are, when x=0,t=1 and x=π,t=1, we get

I=π211dt1+t2=π10dt1+t2[aaf(x)dx=aaf(x)dx and =22a0f(x)dx, if f(x) is even function].I=π|tan1t|10=π[tan11tan10]=π[π40]=π24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Critical Angle
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon