wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π0xtanxsecx+tanxdx

Open in App
Solution

I=π0xtanxsecx+tanxdx
=π0(πx)tan(πx)sec(πx)+tan(πx).dx
=π0(πx)(tanx)(sec+tanx)
I=π0π.tanxsecx+tanxdxπ0xtanxsecx+tanxdx
I=π0πtanx×secxtanx(secx+tanx)(secxtanx)I
I+I=π0πtanx(secxtanx)dx (sec2xtan2x=I)
2I=ππ0(tanxsecxtan2x)dx
=ππ0tanx.secx(sec2x2) dx

2I=ππ0(tanx.secxsec2x+1)dx
I=π2[secxtanx+x]π0
=π2[(secπtanπ+π)(sec0tan0+0)]
=π2[1+π1]
=π2[π2] Ans.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon