The correct option is
C π3Putting
cosx=1−tan2(x/2)1+tan2(x/2),
∫π0dx5+41−tan2(x/2)1+tan2(x/2)
=∫π0{1+tan2(x/2)}dx9+tan2(x/2)
=∫π0sec2(x/2)dxtan2(x/2)+32
Let , z=tan(x/2)⟹dz=12sec2(x/2)dx⟹sec2(x/2)dx=2dz
And when, x=0,z=0 and when x=π,z=∞
Hence, integration becomes:-
∫∞02dzz2+32
=23[tan−1z3]∞0
=23[tan−1∞−tan−10]
=23(π2−0)
=π3