wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π0x2sin2x.sin(π2cosx)dx(2xπ)

Open in App
Solution

π0nsin2x.sin(π/2cosx)2xπdx
I=π0(πx)sin(2π2x)sin(π2cos(πx))dx2(πx)π
=π0(πx)(sin2x)sin(π/2(cosx))dx2x+π
= =π0(xπ)sin2xsin(π2cosx)π2xdx
2I=π0(2xπ)sin2xsin(π2cosx)dx2xπ
=π02sinxcosx.sin(π2cosx)dx
π2cosx=tsindx=2dtπ
=2π/2π/22dtπ(2tπ)sint.dt
=4π2π/2π/2+sint.dt=8π2π/20tsintdt
=8π2(sinπ2sin0)=8π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon