wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : π0log(1+cosx)dx

Open in App
Solution

I=π0log(1+cotx)dx
I=π0log(x+2cos2x2x)dx
I=π0[log(2)+log(cosx2)2]dx
I=π0log2x dx+π02log(cosx2)dx
I=log2(x)π0+2π0log(cosx2)dx
I1=π0log(cosx2)dx
I1=π0log(cos(πx)2)dx
I1=π0log(sinx2)dx
So, I1=π0log(sinx2)dx
let x2t
I1=π0log(sint)dt
=π2log2
So, I=log2(π0)+2[π2log2]
=πlog2πlog2
=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon