I=∫π0log(1+cotx)dx
I=∫π0log(x+2cos2x2−x)dx
I=∫π0[log(2)+log(cosx2)2]dx
I=∫π0log2x dx+∫π02log(cosx2)dx
I=log2(x)π0+2∫π0log(cosx2)dx
I1=∫π0log(cosx2)dx
I1=∫π0log(cos(π−x)2)dx
I1=∫π0log(sinx2)dx
So, I1=∫π0log(sinx2)dx
let x2→t
I1=∫π0log(sint)dt
=−π2log2
So, I=log2(π−0)+2[−π2log2]
=πlog2−πlog2
=0