Evaluate∫sin2t0sin−1√xdx+∫cos2t0cos−1√xdx=k, then tan(k)=?
Open in App
Solution
Let I=∫sin2t0sin−1√xdx+∫cos2t0cos−1√xdx I=I1+I2 For I1 put √x=sinθ⇒x=sin2θ⇒dx=sin2θdθ ∴I1=∫t0θsin2θdθ And for I2 put √x=cosϕ ∴I2=∫tπ/2−ϕsin2ϕdϕ=∫π/2tθsin2θdθ Hence I=∫t0θsin2θdθ+∫π/2tθsin2θdθ=∫π/20θsin2θdθ =[θ(−cos2θ2)−(1)(−sin2θ4)]π/20=π2.12+.0=π4