Evaluate: ∫π30|tanx−1|dx
∫π30|tanx–1|dx
=∫π40|tanx–1|dx+∫π3π4|tanx–1|dx
=∫π40(1−tanx)dx+∫π3π4(tanx–1)dx
(∵0<tanx<1 for 0<x<π4 and tanx>1 for π4<x<π3)
=[x+ln|cosx|]π40+[−ln |cosx|−x]π3π4
(∵∫tanxdx=−ln|cosx|)
=π4+log(1√2)+(−ln(12)−π3+ln(1√2)+π4)
=π6+ln2+2ln(1√2)
=π6.(∵2ln(1√2)=ln(12)=−ln2).