intergrating by parts
I=∫1−1t cost dt , where t=I function cos t=II function
=t∫cos t dt−∫d(t)dt∫cos t dt
=[t sint+cost]
Now putting the values of limit
I=[tsin t+cos t]1−1
=(sin1+cos1)−(−sin(−1)+cos(−1))
Now since sin(−x)=−sinx
and cos(−x)=cosx
∴ I=sin1+cos1−(sin1+cos1)
=0