We have,
∫21lnxx2dx
=[−lnxx]12+∫21[(ddxlnx)x−2dx]dx
=−12ln2+ln1+∫21[1xx−2dx]dx
=−12ln2+ln1+∫21[x−3dx]dx
=−12ln2+ln1+∫21[x−2−2]dx
=−12ln2+ln1+1−2∫21x−2dx
=−12ln2+ln1−12[x−1−1]12+C
=−12ln2+ln1+12[x−1]12+C
=−12ln2+ln1+12[2−1−1−1]12+C
=−12ln2+ln1+12[12−1]+C
=−12ln2+ln1+12(−12)+C
=−12ln2+0−14+C∴ln1=0
=−12ln2−14+C
Hence, this is the answer.