wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 31(2x2+5x)dx as a limit of a sum.

Open in App
Solution

Let f(x)=2x2+5x
Here a=1,b=3
Therefore, h=ban=31n=2n
nh=2
Also nh0
We know that, abf(x)dx=limh0h[f(a)+f(a+h)+...+f(a+(n1)h)]
31(2x2+5x)dx=limh0h[f(1)+f(1+h)+...+f(1+(n1)h)]
=limh0h[(2×12+5×1)+2(1+h)2+5(1+h)+....+2(1(n1)h2+5(1+(n1)d))]
=limh0h[(2+5)+(2+4h+2h2+5+5h)+....+(2+4(n1)h+2(n1)2h2+5+5(n1)h)]
=limh0h[(7)+(7+9h+2h2)+....+(7+9(n1)h+2(n1)2h2]
=limh0h[(7n+9h(1+2+....+n1)+2h2(12+22+....(n1)2))]
=limh0[7nh+9h2n(n1)2+2h3(n1).n(2n1)6]
=limh0⎢ ⎢ ⎢ ⎢7nh+9(nh)2.(11n)2+2(nh)3.(11n).(21n)6⎥ ⎥ ⎥ ⎥
=limn⎢ ⎢ ⎢ ⎢14+36(11n)2+16(11n).(21n)6⎥ ⎥ ⎥ ⎥ [nh=2]
=limn[14+18(11n)+83(11n).(21n)]
14+18+83×1×2
=32+163=96+163=1123.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definite Integral as Limit of Sum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon