Let f(x)=2x2+5x
Here a=1,b=3
Therefore, h=b−an=3−1n=2n
⇒nh=2
Also n→∞⇔h→0
We know that, ∫abf(x)dx=limh→0h[f(a)+f(a+h)+...+f(a+(n−1)h)]
∫31(2x2+5x)dx=limh→0h[f(1)+f(1+h)+...+f(1+(n−1)h)]
=limh→0h[(2×12+5×1)+2(1+h)2+5(1+h)+....+2(1−(n−1)h2+5(1+(n−1)d))]
=limh→0h[(2+5)+(2+4h+2h2+5+5h)+....+(2+4(n−1)h+2(n−1)2h2+5+5(n−1)h)]
=limh→0h[(7)+(7+9h+2h2)+....+(7+9(n−1)h+2(n−1)2h2]
=limh→0h[(7n+9h(1+2+....+n−1)+2h2(12+22+....(n−1)2))]
=limh→0[7nh+9h2n(n−1)2+2h3(n−1).n(2n−1)6]
=limh→0⎡⎢
⎢
⎢
⎢⎣7nh+9(nh)2.(1−1n)2+2(nh)3.(1−1n).(2−1n)6⎤⎥
⎥
⎥
⎥⎦
=limn→∞⎡⎢
⎢
⎢
⎢⎣14+36(1−1n)2+16(1−1n).(2−1n)6⎤⎥
⎥
⎥
⎥⎦ [∴nh=2]
=limn→∞[14+18(1−1n)+83(1−1n).(2−1n)]
14+18+83×1×2
=32+163=96+163=1123.