The correct option is
C 1
−2e∫e1lnxx2dx
Let z=lnx ⟹dz=1x and x=ez
When x=1,z=0 and when x=e,z=1, hence integration becomes:-
∫e11xlnxdxx
=∫10e−z.zdz
Using integration by parts:-
=[−ze−z−e−z]10
=(−e−1−e−1)−(−1)=−2e−1+1
=1−2e
Hence, answer is option-(A).