Evaluate ∫e1xnlogx.dx
∫e1xnlogxdx
∫xnlogxdx=xn+1n+1logx−1n+1∫xndx
=logxxn+1n+1−1(n+1)2⋅xn+1+c
∫e1xnlogxdx=(xn+1n+1logx−1(n+1)2xn+1+c)e1
=[en+1n+1−1(n+1)2en+1+c]−(0n+1−1(n+1)2+c)
=1(n+1)2[nen+1+1]