∫2−1|x3−x|dx
It is clear that
x3−x⩾0on[−1,0]
x3−x⩽0on[0,1]
x3−x⩾0on[1,2]
Hence the interval of the integral can be subdivided as
∫2−1|x3−x|dx=∫−10(x3−x)dx+∫10−(x3−x)dx+∫21(x3−x)dx
=∫0−1(x3−x)dx+∫10(x−x3)dx+∫21(x3−x)dx
=[x44−x22]0−1+[x22−x44]10+[x44−x22]21
[∫xndx=xn+1n+]
=−(14−12)+(12−14)+(4−2)−(14−12)
=−14+12+12−14+2−14+12
=32−34+2
=114 Ans