wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 2π0exsin(π4+x2)dx.

Open in App
Solution

exsin(π/4+x/2)
let ex be function & sin(π/4+x/2)
be function
Now y=exsin(π/9+x/2)sin(π/9+x/2)×ddx(ex)
y=ex2cos(π/9+x/2)+12cos(π/4+x/2)×ex
y=ex2cos(π/4+x2)+12×12exsin(π/4+x/2)12×12exsin(π/4+x2)
y=ex2cos(π/4+π/2)+14exsin(π4+π2)14exsin(π/4+π/2)y
8y4=ex2cos(π/4+π/2)+exsin(π4+π2)4
y=2ex5cos(π/4+π/2)+exsin(π4+π2)5
2π0y=⎜ ⎜ ⎜ ⎜2ex5cos(π/4+π/2)+exsin(π4+π2)5⎟ ⎟ ⎟ ⎟2π
=2e2π5cosπ/4+e2π(sinπ/4)5
=3e2π52


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon