wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: (32x).2+xx2dx.

Open in App
Solution

(32x)2+xx2dx=(32x)(32)2(x12)2dx=32(32x)1(2x13)2dx

Substituting 2x13=cosθdx=32sinθdθ , we get:

32(32x)1(2x13)2dx=32(23cosθ)sinθ(32sinθ)dθ=94(3cosθ2)sin2θdθ=274cosθsin2θdθ92sin2θdθ =94sin3θ94(1cos2θ)dθ=94sin3θ94θ+98sin2θ+C

Substituting back, we get:

94sin3θ94θ+98sin2θ+C=94(1(2x13)2)3294cos12x13+94(2x13)(1(2x13)2)12+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon