The correct option is A π2(β−α)
Let I=∫βα√x−αβ−xdx (i)
Put x=αcos2t+βsin2t
∴x−α=αcos2t+βsin2t−α=β(sin2(t)+α(cos2t−1))
=βsin2t−αsin2t⟹(x−α)=(β−α)sin2t
Similarly, β−x=(β−α)cos2t
∴dx=2(β−α)sintcostdt
where, x=α⟹sin2t=0∴t=0 (∵α<β)
and x=β⟹cos2t=0∴t=π2
∴ equation (i) reduces to;
I=∫π20√(β−α)sin2t(β−α)cos2t.2(β−α)sintcostdt
=∫π20sintcost.2(β−α)sintcostdt
⎡⎣∵√sin2tcos2t=+sintcostastϵ[0,π2]⎤⎦
=(β−α)∫π202sin2tdt
=(β−α)∫π20(1−cos2t)dt
=(β−α)(t−sin2tt)π20
=(β−α)[(π2−12sinπ)−(0−12sin0)]
=(β−α)[π2]
∴I=π2(β−α)
Aliter I=∫βα√x−αβ−xdx
[Put √β−x=t∴β−x=t2, −dx=2tdt]
when x=α;x=β
β−α=t2;0=t2
√β−α=t;0=t
∴I=∫0√β−α√(β−t2)−αt(−2t)dt
=−2∫0√β−α√(β−α)−t2dt
I=2∫√β−α0√(√β−α)2−t2dt
=2{t2√(β−α)−t2+(β−α)2sin−1(t√β−α)}√β−α0
I=2[{0+(β−α)2sin−1(1)}−{0+(β−α)2sin−1(0)}]
=2(β−α)2.π2
∴I=π2(β−α)