∫dx4cosx+3sinx
∫dx4(1−tan2x/21+tan2x/2)+3(2tanx/21+tan2x/2)
∫(1+tan2x/2)dx4−4tan2x/2+6tanx/2
Let tanx/2=t
sec2x2dx=2dt
∫2dt4−4t2+6t
∫dt2−2t2+3t
12∫dt1−t2+32t
12∫dt1−(t2−32t)
12∫dt1−(t2−3t2+t(34)2)2+(34)2
12∫dt1+916−(t−3/2)2
12∫dt25/16−(t−3/2)2
12∫dt(5/4)2−(t−3/2)2
∫dxa2−x2=12aln∣∣∣a+xa−x∣∣∣+C
1212(5/4)ln∣∣∣5/4+t−3/25/4−t+3/2∣∣∣+C
15ln∣∣∣t−1/411/4−t∣∣∣+C
15ln∣∣∣4t−111−4t∣∣∣+C
15ln∣∣∣4tanx/2−111−4tanx/2∣∣∣+C