∫3x+12x2+x+1dx
3x+1=A(4x+1)+B
3x+1=4Ax+(A+B)
4A=3⇒A=34
A+B=1
B=1−34=14
∫34(4x+1)+142x2+x+1dx
∫4x+12x2+x+1dx+14∫dx2x2+x+1
2x2+x+1=t
(4x+1)dx=dt
34∫dtf+14∫dx2x2+x+1
34ln|2x2+x+1|+14∫dx2x2+x+1
34ln|2x2+x+1|+18∫dxx2+x2+12
34ln|2x2+x+1|+18∫dxx2+x2+116+12−116
34ln|2x2+x+1|+18∫dx(x+14)2+(√74)2
34ln|2x2+x+1|+181√7tan−1⎛⎜
⎜
⎜
⎜⎝x+14√74⎞⎟
⎟
⎟
⎟⎠+C
34ln|2x2+x+1|+12√7tan−1(4x+1√7)+C