wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: dx1cosxsinx

Open in App
Solution

Let I=dx1cosxsinx
=dxcosx+sinx1
=dx1tan2x21+tan2x2+2tanx21+tan2x21
=dx1tan2x2+2tanx21tan2x21+tan2x2
=1+tan2x2dx2tan2x2+2tan2x2
Let tanx2=u 12sec2x2dx=du
So, by replacing the values we get
I=12sec2x2dxtanx22tanx2

=duu2u

=1(11u)u2du

Let t=11u,dtdu=1u2
I=1tdt
=ln(t)+c
=ln(11u)+c
=ln⎜ ⎜11tanx2⎟ ⎟+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon