∫(x2+1)ex(x+1)2dx
Substitute u=x+1 →dx=du & x2=(u−1)2
=e−1∫((u−1)2+1)euu2du
=e−1∫[(u−1)2euu2+euu2]du
=e−1[∫(u−1)2euduu2+∫euu2du]
=e−1[∫2euudy+∫euu2du+∫eudu+euu2du]
=e−1[2Ei(u)+∫−euu−∫−euu−Ei(u)+eu+Ei(u)−euu]
=e−1[2Ei(u)+∫Ei(u)−euu−Ei(u)+eu+Ei(u)−euu]
=e−1[−Ei(u)−euu+3u+Ei(u)−euu]
=e−1[eu−2euu]
=[eu−1−2ru−1u]
=ex−2exx+1+c.