wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate
(x2+1)ex(x+1)2dx

Open in App
Solution

(x2+1)ex(x+1)2dx

Substitute u=x+1 dx=du & x2=(u1)2

=e1((u1)2+1)euu2du

=e1[(u1)2euu2+euu2]du

=e1[(u1)2euduu2+euu2du]

=e1[2euudy+euu2du+eudu+euu2du]

=e1[2Ei(u)+euueuuEi(u)+eu+Ei(u)euu]

=e1[2Ei(u)+Ei(u)euuEi(u)+eu+Ei(u)euu]

=e1[Ei(u)euu+3u+Ei(u)euu]

=e1[eu2euu]

=[eu12ru1u]

=ex2exx+1+c.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon