∫x2(x2+2)(2x2+1)dx
Let x2(x2+2)(2x2+1)=Ay+2+B2y+1
y=A(2y+1)+B(y+2)
Put y+2=0⇒ y=−2
−2=A(−3)+0
∴ A=23
Put 2y+1=0⇒ y=−12
−12=0+B(−12+2)
−12=B(32)
∴B=−13
∴y(y+2)(2y+1)=23(y+2)−13(2y+1)
Then x2(x2+2)(2x2+1)=23(x2+2)−13(2x2+1)
∫x2(x2+2)(2x2+1)dx=∫23(x2+2)dx−∫dx3(2x2+1)
=23∫dxx2+(√2)2−13∫dx2x2+1
=23×1√2tan−1x√2−13×2∫dxx2+(1√2)2
=√23tan−1x√2−16×11/√2tan−1x1/√2+c
=√23tan−1x√2−13√2tan−1√2x+c