wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x2(x2+2)(2x2+1)dx

Open in App
Solution

x2(x2+2)(2x2+1)dx
Let x2(x2+2)(2x2+1)=Ay+2+B2y+1
y=A(2y+1)+B(y+2)
Put y+2=0 y=2
2=A(3)+0
A=23
Put 2y+1=0 y=12
12=0+B(12+2)
12=B(32)
B=13
y(y+2)(2y+1)=23(y+2)13(2y+1)
Then x2(x2+2)(2x2+1)=23(x2+2)13(2x2+1)
x2(x2+2)(2x2+1)dx=23(x2+2)dxdx3(2x2+1)
=23dxx2+(2)213dx2x2+1
=23×12tan1x213×2dxx2+(12)2
=23tan1x216×11/2tan1x1/2+c
=23tan1x2132tan12x+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon