Evaluate : ∫xsin−1(x2)√1−x4dx
The solution of differential equation dydx+2xy1+x2=1(1+x2)2 is (a) y(1+x2)=C+tan−1x (b) y1+x2=C+tan−1x (c) ylog(1+x2)=C+tan−1x (d) y(1+x2)=C+sin−1x