Evaluate ∫1(1−x2)√1+x2 dx
⇒I=∫(−1t2)×t2×t dt(1−t2)√1+t2
⇒I=−∫t dt(t2−1)√t2+1
Let t2+1=u2 and √t2+1=u
⇒2t dt=2u du
⇒t dt=u du
Since, t2+1=u2
⇒t2+1−2=u2−2
⇒t2−1=u2−2
Now,
I=−∫t dt(t2−1)√t2+1
⇒I=−∫u du(u2−2)u
⇒I=−∫du(u2−2)
∴I=−∫duu2−(√2)2
=−12√2log∣∣∣u−√2u+√2∣∣∣+c [Since, ∫dxx2−a2=12alog∣∣∣x−ax+a∣∣∣+c]
=−12√2log∣∣∣√t2+1−√2√t2+1+√2∣∣∣+c
=−12√2log∣∣
∣
∣
∣∣√1x2+1−√2√1x2+1+√2∣∣
∣
∣
∣∣+c
=−12√2log∣∣ ∣ ∣ ∣∣√1+x2x−√2√1+x2x+√2∣∣ ∣ ∣ ∣∣+c
=−12√2log∣∣∣√1+x2−√2x√1+x2+√2x∣∣∣+c
∴∫1(1−x2)√1+x2 dx=−12√2log∣∣∣√1+x2−√2x√1+x2+√2x∣∣∣+c