Let I=∫12x2+x+1dx
=12∫1x2+x2+12dx
=12∫1x2+x2+116−116+12dx
=12∫1(x+14)2−116+12dx
=12∫1(x+14)2+716dx
We know that, ∫dxx2+a2=1atan−1xa+C
=12⎛⎜
⎜
⎜
⎜⎝1√74tan−1⎡⎢
⎢
⎢
⎢⎣x+14√74⎤⎥
⎥
⎥
⎥⎦⎞⎟
⎟
⎟
⎟⎠+c
I=2√7tan−1[(4x+1)√7]+c
Hence,
∫12x2+x+1dx=2√7tan−1[(4x+1)√7]+c