wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 1cos(xa)cos(xb)dx

Open in App
Solution

Given equation is,
I=1cos(xa)cos(xb)

Multiply and divided by sin(ab) in the equation, we get

=sin(ab)sin(ab)×1cos(xa)cos(xb)dx

=1sin(ab)sin(ab)cos(xa)cos(xb)dx


=1sin(ab)sin(ab+xx)cos(xa)cos(xb)dx


=1sin(ab)sin[(xb)(xa)]cos(xa)cos(xb)dx


We know that ,
sin(AB)=sinAcosBcosAsinB

Therefore,

=1sin(ab)sin(xb)cos(xa)cos(xb)sin(xa)cos(xa)cos(xb)dx


=1sin(ab)sin(xb)cos(xb)sin(xa)cos(xa)dx


=1sin(ab)tan(xb)tan(xa)dx


We know; tanx=log|cosx|+c


Therefore,
=1sin(ab)[log|cos(xb)|+log|cos(xa)|]+c

logmlogn=logmn

=1sin(ab)[logcos(xa)cos(xb)]+c

Hence, I=1sin(ab)[logcos(xa)cos(xb)]+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Summation by Sigma Method
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon