=1sin(a−b)∫sin(a−b)cos(x−a)cos(x−b)dx
=1sin(a−b)∫sin(a−b+x−x)cos(x−a)cos(x−b)dx
=1sin(a−b)∫sin[(x−b)−(x−a)]cos(x−a)cos(x−b)dx
=1sin(a−b)∫sin(x−b)cos(x−a)−cos(x−b)sin(x−a)cos(x−a)cos(x−b)dx
=1sin(a−b)∫sin(x−b)cos(x−b)−sin(x−a)cos(x−a)dx
=1sin(a−b)∫tan(x−b)−tan(x−a)dx
We know; ∫tanx=−log|cosx|+c