wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 1sinxcos2xdx

Open in App
Solution

1sinxcos2xdx
=sin2x+cos2xsinxcos2xdx [using sin2x+cos2x=1]
=sinxcos2xdx+1sinxdx
for the first integral, put cosx=t
sinxdx=dt
dx=1sinxdt
=dtt2+cosecxdx
=(t)2+12+1+(ln|cosecx+cotx|)
=1t(ln|cosecx+cotx|)
=1cosxln|cosecx+cotx|
=secxln|cosecx+cotx|

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon