∫1sinxcos2xdx=∫sin2x+cos2xsinxcos2xdx [using sin2x+cos2x=1]
=∫sinxcos2xdx+∫1sinxdx
for the first integral, put cosx=t
⇒−sinxdx=dt
⇒dx=−1sinxdt
=∫−dtt2+∫cosecxdx
=−(t)−2+1−2+1+(−ln|cosecx+cotx|)
=1t−(ln|cosecx+cotx|)
=1cosx−ln|cosecx+cotx|
=secx−ln|cosecx+cotx|