CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 1(sinx+tanx)dx

Open in App
Solution

LetI=1(sinx+tanx)dxI=1(sinx+sinxcosx)dxI=1(sinxcosx+sinxcosx)dx=cosxsinxcosx+sinxdx=cosxsinx(cosx+1)dx=sinxcosxsin2x(cosx+1)dx=sinxcosx(1cos2x)(cosx+1)dx=sinxcosx(1cosx)(cosx+1)2dx
Let u=cosxdudx=sinx
Substituting into our integral, we get:
I=(1)(u)(1u)(u+1)2du=u(u1)(u+1)2du
which we can decompose into partial fraction as:
u(u1)(u+1)2=Au1+Bu+1+C(u+1)2=A(u+1)2+B(u1)(u+1)+C(u1)(u1)(u+1)2
leading to,
u=A(u+1)2+B(u1)(u+1)+C(u1)
Put u=11=4AA=14
Put u=11=2CC=12
Comparing coefficients,
coeff(u2)0=A+BB=14
Hence, the partial fraction decomposition gives us:
I=14u114u+1+12(u+1)2du=141u1du141u+1du+121(u+1)2du=14ln|u1|14ln|u+1|+121u+1+C=14lnu1u+1121u+1+C
Restoring the substitution, we get:
I=14lncosx1cosx+1121cosx+1+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon