LetI=∫1(sinx+tanx)dxI=∫1(sinx+sinxcosx)dxI=∫1(sinxcosx+sinxcosx)dx=∫cosxsinxcosx+sinxdx=∫cosxsinx(cosx+1)dx=∫sinxcosxsin2x(cosx+1)dx=∫sinxcosx(1−cos2x)(cosx+1)dx=∫sinxcosx(1−cosx)(cosx+1)2dxLet u=cosx⟹dudx=−sinx
Substituting into our integral, we get:
I=∫(−1)(u)(1−u)(u+1)2du=∫u(u−1)(u+1)2du
which we can decompose into partial fraction as:
u(u−1)(u+1)2=Au−1+Bu+1+C(u+1)2=A(u+1)2+B(u−1)(u+1)+C(u−1)(u−1)(u+1)2
leading to,
u=A(u+1)2+B(u−1)(u+1)+C(u−1)
Put u=1⟹1=4A⟹A=14
Put u=−1⟹−1=−2C⟹C=12
Comparing coefficients,
coeff(u2)⟹0=A+B⟹B=−14
Hence, the partial fraction decomposition gives us:
I=∫14u−1−14u+1+12(u+1)2du=14∫1u−1du−14∫1u+1du+12∫1(u+1)2du=14ln|u−1|−14ln|u+1|+12−1u+1+C=14ln∣∣∣u−1u+1∣∣∣−121u+1+C
Restoring the substitution, we get:
I=14ln∣∣∣cosx−1cosx+1∣∣∣−121cosx+1+C