The correct option is A 12log∣∣∣tan(x2+π12)∣∣∣+c
Let√3=rsinθ and 1=rcosθ
Then, r=√(√3)2+12=2 and tanθ=√31 or θ=π3
∴∫1√3sinx+cosxdx
=∫1rsinθsinx+rcosθcosxdx
=1r∫1cos(x−θ)dx=1r∫sec(x−θ)dx
=1rlog∣∣∣tan(π4+x2−θ2)∣∣∣+c
=12log∣∣∣tan(π4+x2−π6)∣∣∣+c
=12log∣∣∣tan(x2+π12)∣∣∣+c