Evaluate:
∫1−x3(1−2x)dx
=∫x3−12x−1dx
Let u=2x−1⇒u+12=x
du=2dx
x3=(4+12)3
=116∫(4−1)(42+4u+7)4du
=116∫(42+3u−7u+3)du
=116[u33+3u22−7lu(4)+3u]
=(2x−1)348+3(2x−1)232−7lu(2x−1)+3(2x−1)+C
1)∫x3+3x+4√xdx
2)∫√x(3x2+2x+3)dx
3)∫(2x2−3sinx+5√x)dx
4) ∫sec2xcsc2xdx