wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: 2(1x)(1+x2)dx.

Open in App
Solution

Let I=2(1x)(1+x2)dx

2(1x)(1+x2)=A1x+Bx+C1+x2

2(1x)(1+x2)=A(1+x2)+(Bx+C)(1x)(1x)(1+x2)

2=A(1+x2)+(Bx+C)(1x)

2=A+Ax2+BxBx2+CCx

2=(A+C)+(AB)x2+(BC)x

Equating coefficients both sides, we get

A+C=2,AB=0,BC=0

A=B,B=C

A=B=C,A+A=2A=1

therefore A=B=C=1

So, 2(1x)(1+x2)=11x+x+11+x2
2(1x)(1+x2)=11xdx+x+11+x2dx

=log|1x|+x1+x2dx+11+x2dx

=log|1x|+12log1+x2+tan1x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon