Let I=∫3x2+4x+3(x−2)(x2+3x+2) dx
Now,
3x2+4x+3(x−2)(x2+3x+2)=3x2+4x+3(x−2)(x+1)(x+2)
By using partial fraction,
3x2+4x+3(x−2)(x+1)(x+2)=Ax−2+Bx+1+Cx+2
⇒3x2+4x+3=A(x2+3x+2)+B(x2−4)+C(x2−x−2)
On comparing coeficients of constant, x and x2, we get:
A+B+C=3 ...(1)3A−C=4 ...(2)2A−4A−2C=3 ...(3)
By solving the equations (1),(2) and (3), we get:
A=2312, B=−23, C=74
∴I=2312∫1x−2dx−23∫1x+1dx+74∫1x+2dx
=2312loge(x−2)−23loge(x+1)+74loge(x+2)+C