Consider the given integral.
I=∫3x2x6+1dx
I=∫3x2(x3)2+1dx
Let t=x3
dt=3x2dx
Therefore,
I=∫dtt2+1
I=tan−1t+C
On putting the value of t, we get
I=tan−1(x3)+C
Hence, this is the answer.
Integrate the following functions. ∫3x2x6+1dx.