wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : cos2xcos2αcosxcosαdx.

Open in App
Solution

ycos2xcos2αcosxcosαdx
y=(2cos2x1)(2cos2α1)cosxcosαdx[cos2θ=2cos2θ1]
y=2cos2x12cos2α+1(cosxcosα)dx
y=2cos2x2cos2α(cosxcosα)dx
y=2cos2xcos2αcosxcosαdx
y=2(cosxcosα)(cosx+cosα)(cosxcosα)dxa2b2=(ab)(a+b)
y=2[(cosx+cosα)dx]
y=2[cosx+cosαdx]
y=2[sinx+x.cosα+c] cosα is a constant.
y=2sinx+2xcosα+c


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 6
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon