GE:
∫dx(1+x4)1/44√x4+1x=m
dx=dmx2(x4+1)3/4−4√x4+1x2=xdm[1m3−m]
⇒∫1xxdx(1+x4)1/4
⇒∫1xxdm[1m3−m]m=∫−m2dm(m4−1)
⇒∫m2(m2+1)(m+1)(m−1)
Partial Fraction
⇒∫[12(m2+1)−14(m+1)+14(m−1)]dm
⇒12tan−1m−14ln(m+1)+14ln(m−1)+c
=12tan−1∣∣
∣∣(x4+1)1/4x∣∣
∣∣−14ln∣∣
∣∣(x4+1)1/4x+1∣∣
∣∣+14ln∣∣
∣∣(x4+1)1/4x−1∣∣
∣∣+c