wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:dx3+sinx

A
I=12tan1⎜ ⎜3tanx2122⎟ ⎟+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
I=12tan1⎜ ⎜3tanx2+12⎟ ⎟+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
I=12tan1⎜ ⎜3tanx2+122⎟ ⎟+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C I=12tan1⎜ ⎜3tanx2+122⎟ ⎟+C

Consider the given integral.


I=13+sinxdx


I=13+⎜ ⎜2tan2x21+tan2x2⎟ ⎟dx


I=(1+tan2x2)3+3tan2x2+2tanx2dx


I=sec2x23tan2x2+2tanx2+3dx



Let t=tanx2


dtdx=sec2x2(12)


2dt=sec2x2dx



Therefore,


I=213t2+2t+3dt


I=231t2+2t3+1dt


I=231t2+2t3+1919+1dt


I=231(t+13)2+(223)2dt



We know that


dxx2+a2=1atan1(xa)+C



Therefore,


I=23⎢ ⎢ ⎢ ⎢1223tan1⎜ ⎜ ⎜ ⎜t+13223⎟ ⎟ ⎟ ⎟⎥ ⎥ ⎥ ⎥+C


I=12[tan1(3t+122)]+C



On putting the value of t, we get


I=12tan1⎜ ⎜3tanx2+122⎟ ⎟+C



Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon