Evaluate:∫dx3+sinx
Consider the given integral.
I=∫13+sinxdx
I=∫13+⎛⎜ ⎜⎝2tan2x21+tan2x2⎞⎟ ⎟⎠dx
I=∫(1+tan2x2)3+3tan2x2+2tanx2dx
I=∫sec2x23tan2x2+2tanx2+3dx
Let t=tanx2
dtdx=sec2x2(12)
2dt=sec2x2dx
Therefore,
I=2∫13t2+2t+3dt
I=23∫1t2+2t3+1dt
I=23∫1t2+2t3+19−19+1dt
I=23∫1(t+13)2+(2√23)2dt
We know that
∫dxx2+a2=1atan−1(xa)+C
Therefore,
I=23⎡⎢ ⎢ ⎢ ⎢⎣12√23tan−1⎛⎜ ⎜ ⎜ ⎜⎝t+132√23⎞⎟ ⎟ ⎟ ⎟⎠⎤⎥ ⎥ ⎥ ⎥⎦+C
I=1√2[tan−1(3t+12√2)]+C
On putting the value of t, we get
I=1√2tan−1⎛⎜ ⎜⎝3tanx2+12√2⎞⎟ ⎟⎠+C
Hence, this is the answer.