The correct option is
A 1√2log∣∣∣tan(x2+3π8)∣∣∣+cWe are given,
I=∫dxcosx−sinx
=1√2∫dx1√2cosx−1√2sinx
(multiply & divide I with 1/√2)
I=1√2∫dxcosxcos(π4)−sinxsin(π/4)
I=1√2∫dxcos(x+π4)
=1√2∫sec(x+π4)dx
(we know that cos(A+B)=cosAcosB−sinAsinB)
I=1√2log∣∣∣tan(x2+π8+π4)∣∣∣+C
I=1√2log∣∣∣tan(x2+3π8)∣∣∣+C.