wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : dxsinx+sin2x.

Open in App
Solution

Let I=dxsinx+sin2x=dx2sinxcosx+sinx

=dxsinx(1+2cosx)
Take cosx=u
cosx=usinxdx=du

dxsinx=dusin2x (divide by both sin2x)

dxsinx=du(1cos2x)=ducos2x1

I=du(u21)(2u+1)=1(u1)(u+1)(2u+1)

1(u1)(u+1)(2u+1)=Au1+Bu+1+C2u+1

1=A(u+1)(2u+1)+B(u1)(2u+1)+C(u1)(u+1) ...(i)

Solving A,B and C
we get A=16,B=12,C=43

I=16duu1+12duu+1+4312u+1

=16ln(u1)+12ln(u+1)43ln(2u+1)2

=16ln(cosx1) 12ln(cosx+1)23ln(2cosx+1)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon