Let logx=t⇒1xdx=dt ∴∫dxx{6(logx)2+7logx+2} =∫dt6t2+7t+2 =∫dt(3t+2)(2t+1)
Let, 1(3t+2)(2t+1)=A3t+2+B2t+1 1=A(2t+1)+B(3t+2)
On putting t = -1/2 and t = -2/3 respectively, we get ∴1=A(2×−2/3+1) A=−3 1=B(3×−12+2) ⇒B=2 ∫dt(3t+2)(2t+1)=∫−33t+2dt+∫22t+1dt =−3.13log|3t+2|+2.12log|2t+1|+c =−log|3t+2|+log|2t+1|+c =log|2t+1||3t+2|+c=log∣∣∣2logx+13logx+2∣∣∣+c