1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Integration by Partial Fractions
Evaluate: ∫...
Question
Evaluate:
∫
d
x
x
+
√
x
2
+
2
x
+
2
using Euler's substitution.
A
1
2
[
√
x
2
+
2
x
+
2
+
x
+
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
∣
∣
∣
+
ln
∣
∣
∣
√
x
2
+
2
x
−
2
−
x
−
2
√
x
2
+
2
x
+
2
−
x
−
1
∣
∣
∣
]
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
2
[
√
x
2
+
2
x
+
2
−
x
+
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
∣
∣
∣
+
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
√
x
2
+
2
x
+
2
−
x
−
1
∣
∣
∣
]
+
C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
1
2
[
√
x
2
+
2
x
+
2
−
x
−
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
∣
∣
∣
−
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
√
x
2
+
2
x
+
2
−
x
−
1
∣
∣
∣
]
+
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
1
2
[
√
x
2
+
2
x
+
2
−
x
+
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
∣
∣
∣
+
ln
∣
∣
∣
√
x
2
+
2
x
+
2
−
x
−
2
√
x
2
+
2
x
+
2
−
x
−
1
∣
∣
∣
]
+
C
Q
∫
1
x
+
√
x
2
+
2
x
+
2
d
x
=
∫
x
−
√
x
2
+
2
x
+
2
x
2
−
x
2
−
2
x
−
2
d
x
=
∫
x
−
√
x
2
+
2
x
+
2
−
2
(
x
+
1
)
d
x
=
∫
√
(
x
+
1
)
2
+
1
−
x
2
(
x
+
1
)
d
x
⇒
put
x
+
1
=
t
d
x
=
d
t
=
∫
√
t
2
+
1
−
(
t
−
1
)
2
t
d
x
=
1
2
∫
√
t
2
+
1
t
2
d
t
−
1
2
∫
t
−
1
t
d
t
=
1
2
∫
√
(
1
t
)
2
+
1
d
t
−
1
2
∫
1
d
t
−
1
2
∫
1
t
d
t
=
1
2
⋅
1
2
t
√
(
1
t
)
2
+
1
+
1
2
l
n
∣
∣ ∣
∣
1
t
+
√
1
t
2
+
1
∣
∣ ∣
∣
−
t
2
−
1
2
l
n
|
t
|
+
c
=
1
4
t
√
(
1
t
)
2
+
1
+
l
n
∣
∣ ∣
∣
⎷
1
t
+
√
1
t
2
+
1
∣
∣ ∣
∣
−
t
2
−
l
n
|
√
t
|
+
c
=
1
2
t
(
(
1
t
)
2
+
1
)
+
l
n
∣
∣ ∣
∣
⎷
1
t
+
√
1
t
2
+
1
∣
∣ ∣
∣
−
t
2
−
l
n
|
√
t
|
+
c
=
1
2
(
x
+
1
)
[
1
(
x
+
1
)
2
+
1
]
+
l
n
∣
∣ ∣
∣
⎷
1
x
+
1
+
√
1
(
x
+
1
)
2
+
1
∣
∣ ∣
∣
−
x
+
1
2
−
l
n
∣
∣
√
x
+
1
∣
∣
+
c
Suggest Corrections
0
Similar questions
Q.
If
I
=
∫
d
x
1
+
√
x
2
+
2
x
+
2
=
A
7
log
∣
∣
x
+
1
+
√
x
2
+
2
x
+
2
∣
∣
−
√
x
2
+
2
x
+
2
−
1
x
+
1
+
C
then A is equal to
Q.
Find the square root of
√
2
x
+
√
−
x
4
−
1
Q.
If
y
=
x
2
2
+
1
2
x
√
x
2
+
1
+
l
n
√
x
+
√
x
2
+
1
find the value of
x
d
y
d
x
+
ln
d
y
d
x
Q.
If f(x) = x
2
-2 and g(x) = 2x. Find f/g.