wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate e2x1e2x+1dx

Open in App
Solution

I=e2x1e2x+1dx

I=e2x+111e2x+1dx=(12e2x+1)dx

I=x2e2x+1dx

Consider:
E=2e2x+1dx

Assuming e2x+1=t
2e2xdx=dt
2dx=dtt1

Now,
E=dtt(t1)=(1t11t)dt
E=ln(t1)ln(t)+k, where k is the constant of integration
E=ln(t1t)+k
E=ln(e2xe2x+1)+k

Therefore,
I=e2x1e2x+1dx=xln(e2xe2x+1)+k

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon