I=∫e2x−1e2x+1dx
⇒I=∫e2x+1−1−1e2x+1dx=∫(1−2e2x+1)dx
⇒I=x−∫2e2x+1dx
Consider:
E=∫2e2x+1dx
Assuming e2x+1=t
⇒2e2xdx=dt
⇒2dx=dtt−1
Now,
E=∫dtt(t−1)=∫(1t−1−1t)dt
E=ln(t−1)−ln(t)+k, where k is the constant of integration
⇒E=ln(t−1t)+k
⇒E=ln(e2xe2x+1)+k
Therefore,
I=∫e2x−1e2x+1dx=x−ln(e2xe2x+1)+k